
focusing when only considering geometric optics, as in **Figure 4.23**(a). The focal point is regarded as an infinitely small point with a huge intensity and the capacity to incinerate most samples, irrespective of the *NA* of the objective lens—an unphysical oversimplification. For wave optics, due to diffraction, we take into account the phenomenon in which the focal point spreads to become a focal spot (**Figure 4.23**(b)) with the size of the spot decreasing with increasing *NA*. Consequently, the intensity in the focal spot increases with increasing *NA*. The higher the *NA*, the greater the chances of photodegrading the specimen. However, the spot never becomes a true point.

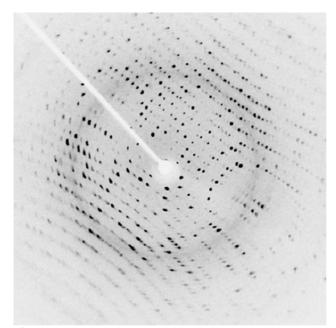
Figure 4.23 (a) In geometric optics, the focus is modelled as a point, but it is not physically possible to produce such a point because it implies infinite intensity. (b) In wave optics, the focus is an extended region.

In a different type of microscope, molecules within a specimen are made to emit light through a mechanism called fluorescence. By controlling the molecules emitting light, it has become possible to construct images with resolution much finer than the Rayleigh criterion, thus circumventing the diffraction limit. The development of super-resolved fluorescence microscopy led to the 2014 Nobel Prize in Chemistry.

In this Optical Resolution Model, two diffraction patterns for light through two circular apertures are shown side by side in **this simulation (https://openstaxcollege.org/l/21optresmodsim)** by Fu-Kwun Hwang. Watch the patterns merge as you decrease the aperture diameters.

4.6 X-Ray Diffraction

Learning Objectives

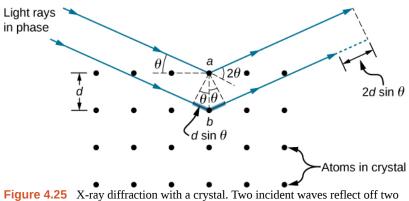

By the end of this section, you will be able to:

 Describe interference and diffraction effects exhibited by X-rays in interaction with atomic-scale structures

Since X-ray photons are very energetic, they have relatively short wavelengths, on the order of 10^{-8} m to 10^{-12} m. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms and molecules. The process is called **X-ray diffraction**, and it involves the interference of X-rays to produce patterns that can be analyzed for information about the structures that scattered the X-rays.

Perhaps the most famous example of X-ray diffraction is the discovery of the double-helical structure of DNA in 1953 by an international team of scientists working at England's Cavendish Laboratory—American James Watson, Englishman Francis Crick, and New Zealand-born Maurice Wilkins. Using X-ray diffraction data produced by Rosalind Franklin, they were the first to model the double-helix structure of DNA that is so crucial to life. For this work, Watson, Crick, and Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine. (There is some debate and controversy over the issue that Rosalind Franklin was not included in the prize, although she died in 1958, before the prize was awarded.)

Figure 4.24 shows a diffraction pattern produced by the scattering of X-rays from a crystal. This process is known as X-ray crystallography because of the information it can yield about crystal structure, and it was the type of data Rosalind Franklin supplied to Watson and Crick for DNA. Not only do X-rays confirm the size and shape of atoms, they give information about the atomic arrangements in materials. For example, more recent research in high-temperature superconductors involves complex materials whose lattice arrangements are crucial to obtaining a superconducting material. These can be studied using X-ray crystallography.


Figure 4.24 X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this interference pattern. Analysis of the pattern yields information about the structure of the protein. (credit: "Del45"/Wikimedia Commons)

Historically, the scattering of X-rays from crystals was used to prove that X-rays are energetic electromagnetic (EM) waves. This was suspected from the time of the discovery of X-rays in 1895, but it was not until 1912 that the German Max von Laue (1879–1960) convinced two of his colleagues to scatter X-rays from crystals. If a diffraction pattern is obtained, he reasoned, then the X-rays must be waves, and their wavelength could be determined. (The spacing of atoms in various crystals was reasonably well known at the time, based on good values for Avogadro's number.) The experiments were convincing, and the 1914 Nobel Prize in Physics was given to von Laue for his suggestion leading to the proof that X-rays are EM waves. In 1915, the unique father-and-son team of Sir William Henry Bragg and his son Sir William Lawrence Bragg were awarded a joint Nobel Prize for inventing the X-ray spectrometer and the then-new science of X-ray analysis.

In ways reminiscent of thin-film interference, we consider two plane waves at X-ray wavelengths, each one reflecting off a different plane of atoms within a crystal's lattice, as shown in **Figure 4.25**. From the geometry, the difference in path lengths is $2d \sin \theta$. Constructive interference results when this distance is an integer multiple of the wavelength. This condition is captured by the *Bragg equation*,

$$m\lambda = 2d\sin\theta, \ m = 1, \ 2, \ 3 \dots$$
 (4.6)

where *m* is a positive integer and *d* is the spacing between the planes. Following the Law of Reflection, both the incident and reflected waves are described by the same angle, θ , but unlike the general practice in geometric optics, θ is measured with respect to the surface itself, rather than the normal.

planes of a crystal. The difference in path lengths is indicated by the dashed line.

Example 4.7

X-Ray Diffraction with Salt Crystals

Common table salt is composed mainly of NaCl crystals. In a NaCl crystal, there is a family of planes 0.252 nm apart. If the first-order maximum is observed at an incidence angle of 18.1°, what is the wavelength of the X-ray scattering from this crystal?

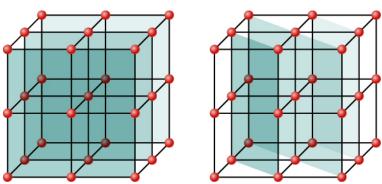
Strategy

Use the Bragg equation, **Equation 4.6**, $m\lambda = 2d \sin \theta$, to solve for θ .

Solution

For first-order, m = 1, and the plane spacing *d* is known. Solving the Bragg equation for wavelength yields

$$\lambda = \frac{2d\sin\theta}{m} = \frac{2(0.252 \times 10^{-9} \text{ m})\sin(18.1^{\circ})}{1} = 1.57 \times 10^{-10} \text{ m, or } 0.157 \text{ nm}.$$


Significance

The determined wavelength fits within the X-ray region of the electromagnetic spectrum. Once again, the wave nature of light makes itself prominent when the wavelength ($\lambda = 0.157$ nm) is comparable to the size of the physical structures (d = 0.252 nm) it interacts with.

4.6 Check Your Understanding For the experiment described in **Example 4.7**, what are the two other angles where interference maxima may be observed? What limits the number of maxima?

Although **Figure 4.25** depicts a crystal as a two-dimensional array of scattering centers for simplicity, real crystals are structures in three dimensions. Scattering can occur simultaneously from different families of planes at different orientations and spacing patterns known as called **Bragg planes**, as shown in **Figure 4.26**. The resulting interference pattern can be quite complex.

Figure 4.26 Because of the regularity that makes a crystal structure, one crystal can have many families of planes within its geometry, each one giving rise to X-ray diffraction.

4.7 | Holography

Learning Objectives

By the end of this section, you will be able to:

- · Describe how a three-dimensional image is recorded as a hologram
- · Describe how a three-dimensional image is formed from a hologram

A **hologram**, such as the one in **Figure 4.27**, is a true three-dimensional image recorded on film by lasers. Holograms are used for amusement; decoration on novelty items and magazine covers; security on credit cards and driver's licenses (a laser and other equipment are needed to reproduce them); and for serious three-dimensional information storage. You can see that a hologram is a true three-dimensional image because objects change relative position in the image when viewed from different angles.

Figure 4.27 Credit cards commonly have holograms for logos, making them difficult to reproduce. (credit: Dominic Alves)

The name hologram means "entire picture" (from the Greek *holo*, as in holistic) because the image is three-dimensional. **Holography** is the process of producing holograms and, although they are recorded on photographic film, the process is quite different from normal photography. Holography uses light interference or wave optics, whereas normal photography uses geometric optics. **Figure 4.28** shows one method of producing a hologram. Coherent light from a laser is split by a mirror, with part of the light illuminating the object. The remainder, called the reference beam, shines directly on a piece of film. Light scattered from the object interferes with the reference beam, producing constructive and destructive interference. As a result, the exposed film looks foggy, but close examination reveals a complicated interference pattern stored on it. Where the interference was constructive, the film (a negative actually) is darkened. Holography is sometimes called lens-less photography, because it uses the wave characteristics of light, as contrasted to normal photography, which